Search results

1 – 3 of 3
Article
Publication date: 2 March 2012

Amit Joe Lopes, Eric MacDonald and Ryan B. Wicker

The purpose of this paper is to present a hybrid manufacturing system that integrates stereolithography (SL) and direct print (DP) technologies to fabricate three‐dimensional (3D…

8577

Abstract

Purpose

The purpose of this paper is to present a hybrid manufacturing system that integrates stereolithography (SL) and direct print (DP) technologies to fabricate three‐dimensional (3D) structures with embedded electronic circuits. A detailed process was developed that enables fabrication of monolithic 3D packages with electronics without removal from the hybrid SL/DP machine during the process. Successful devices are demonstrated consisting of simple 555 timer circuits designed and fabricated in 2D (single layer of routing) and 3D (multiple layers of routing and component placement).

Design/methodology/approach

A hybrid SL/DP system was designed and developed using a 3D Systems SL 250/50 machine and an nScrypt micro‐dispensing pump integrated within the SL machine through orthogonally‐aligned linear translation stages. A corresponding manufacturing process was also developed using this system to fabricate 2D and 3D monolithic structures with embedded electronic circuits. The process involved part design, process planning, integrated manufacturing (including multiple starts and stops of both SL and DP and multiple intermediate processes), and post‐processing. SL provided substrate/mechanical structure manufacturing while interconnections were achieved using DP of conductive inks. Simple functional demonstrations involving 2D and 3D circuit designs were accomplished.

Findings

The 3D micro‐dispensing DP system provided control over conductive trace deposition and combined with the manufacturing flexibility of the SL machine enabled the fabrication of monolithic 3D electronic structures. To fabricate a 3D electronic device within the hybrid SL/DP machine, a process was developed that required multiple starts and stops of the SL process, removal of uncured resin from the SL substrate, insertion of active and passive electronic components, and DP and laser curing of the conductive traces. Using this process, the hybrid SL/DP technology was capable of successfully fabricating, without removal from the machine during fabrication, functional 2D and 3D 555 timer circuits packaged within SL substrates.

Research limitations/implications

Results indicated that fabrication of 3D embedded electronic systems is possible using the hybrid SL/DP machine. A complete manufacturing process was developed to fabricate complex, monolithic 3D structures with electronics in a single set‐up, advancing the capabilities of additive manufacturing (AM) technologies. Although the process does not require removal of the structure from the machine during fabrication, many of the current sub‐processes are manual. As a result, further research and development on automation and optimization of many of the sub‐processes are required to enhance the overall manufacturing process.

Practical implications

A new methodology is presented for manufacturing non‐traditional electronic systems in arbitrary form, while achieving miniaturization and enabling rugged structure. Advanced applications are demonstrated using a semi‐automated approach to SL/DP integration. Opportunities exist to fully automate the hybrid SL/DP machine and optimize the manufacturing process for enhancing the commercial appeal for fabricating complex systems.

Originality/value

This work broadly demonstrates what can be achieved by integrating multiple AM technologies together for fabricating unique devices and more specifically demonstrates a hybrid SL/DP machine that can produce 3D monolithic structures with embedded electronics and printed interconnects.

Content available
Article
Publication date: 14 January 2014

116

Abstract

Article
Publication date: 8 November 2022

Ernesto Tavoletti and Vas Taras

This study aims to offer a bibliometric analysis of the already substantial and growing literature on global virtual teams (GVTs).

Abstract

Purpose

This study aims to offer a bibliometric analysis of the already substantial and growing literature on global virtual teams (GVTs).

Design/methodology/approach

Using a systematic literature review approach, it identifies all articles in the Web of Science from 1999 to 2021 that include the term GVTs (in the title, the abstract or keywords) and finds 175 articles. The VOSviewer software was applied to analyze the bibliometric data.

Findings

The analysis revealed three dialogizing research clusters in the GVTs literature: a pioneering management information systems and organizational cluster, a general management cluster and a growing international management and behavioural studies cluster. Furthermore, it highlights the most cited articles, authors, journals and nations, and the network of strong and weak links regarding co-authorships and co-citations. Additionally, this study shows a change in research patterns regarding topics, journals and disciplinary approaches from 1999 to 2021. Finally, the analysis illustrates the position and centrality in the network of the most relevant actors.

Practical implications

The findings can guide management practitioners, educators and researchers to the most meaningful clusters of publications on GVTs, and help navigate and make sense of the vast body of the available literature. The importance of GVTs has been growing in the past two decades, and Covid-19 has accelerated the trend.

Originality/value

This study provides an updated and comprehensive systematic literature review on GVTs. To the best of the authors’ knowledge, it is also the first systematic literature review and bibliometry on GVTs. It concludes by suggesting future research paths.

Details

Management Research Review, vol. 46 no. 8
Type: Research Article
ISSN: 2040-8269

Keywords

1 – 3 of 3